China Good quality China POM ABS PA66 Plastic CNC Plastic Nylon Spur Gear for Industry manufacturer

Product Description

Product Description

Name CNC machine plastic parts
Material Nylon,PEEK,PI,PEI,PU,PA6,POM,PE,UPE,PTFE,ABS,PC,PP,PS,PMMA,PBT,PVC,PA66,PA66+30%GF,TPE. Etc. 
Color White, black, green, nature, blue, yellow, etc.
Condition In stock/ Made to order
Style  Injection molding , Compression molding 
Shape As per your drawing
Physical Properties Physical Properties of Common Engineering Plastics
Other Shape Sheet, rod, tube, gear, rack, pulley, guide rail, plastics fittings, and so on
Packing Plastic bags, Cartons, Wooden case, Pallet, Container, etc.
Other Shipping status notification during delivery.
Regular notification of new styles & hot selling styles.
Feature: Good abrasion resistance
Application Industry, medical and pharmaceutical, semiconductor, photovoltaic energy, chemical electronics, communications Etc.  
Sample  General free sample ,Normally is USD 30~110 per Style If Special Design We Need Sample Charge, and we will Refund when You Have Official Bulk Order.
Sample time  General 3-7 days after got your drawing and payment 
Delivery  By Air or Sea. If Choose by Air, it is Faster Like You Purchase from the Local Market.

Detailed Photos

China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry  

Company Profile

HangZhou CHINAMFG rubber & Plastic Products Co. , Ltd. was founded in 2015, formerly known as HangZhou Xihu (West Lake) Dis. Rubber Factory was founded in 1976, is a scientific research, production and sales of modern enterprises. The company is located in the outskirts of HangZhou, the ancient capital of the 6 dynasties, the emperor Ganlong praised as “Xihu (West Lake) Dis. Holy Land” of Xihu (West Lake) Dis. District, is the national professional industrial rubber plate production base.

The company’s main products are industrial rubber sheet, Special Industrial Rubber Sheet, non-slip Rubber Sheet, CHINAMFG Rubber Mat, insulating rubber sheet, waterproof rubber sheet, rubber lining, door and window sealing strip, CHINAMFG foam sponge strip, rubber mould products and moulds, PTFE and Nylon Plate, PTFE and Nylon Rod, PTFE and nylon accessories.

With strong Technical Force, a high-level professional research team, and with the relevant universities, scientific research institutes to maintain long-term cooperation and exchange, continue to develop new products to meet the needs of different users. And strictly in accordance with national standards and user requirements, combining enterprise ISO9 tons 1 year .

2.Is your company governmental or private?
It is a private company.

3. How many employees in your company?How many for production,and how many office people?
There are about 1000 employees. 900 for production, and 100 for office people.

4. How many tons can you produce each day?How many containers do you export every month?
We can produce 100 tons each day,and for exporting 500 containers around.

5. What’s your annual sales volume?
Around 35 millions US dollar.

6. How do you control your quality?
We inspect 3 steps:raw material inspection,during production inspection and before warehousing inspection.

7. How often do you inspect your products?
For physical testing,we test every batch,it’s about every 1 hundred meters.
For the surface and size,we check every roll after production and before warehousing.

8. Can you print our logo on the rubber sheet or package bags?
Yes,we can print the logo as customer’s design.

9. What’s your product guarantee period?
Under the condition in the warehouse,we can guarantee 2 years no cracks even on our lowest grade product.On used products,it should depend on the using condition.

10. What certificate have you passed?
Our factory has passed ISO9001.Our product has passed reach standard testing,and SGS certificate.

11. What about the payment ?
TT     LC     cash

12. Is OEM available ?
We can produce as customer ideas.

13. How to deal with the faulty products once we got ?
First ,find the reason ,it is the products problem or damaged by the transportation ,no matter what the reason is ,we will change a new part .

14.How to check the quality before shipment ?
You can come to check by yourself, your friend or the third checking institution. Also can by video.

15. Is sample available ?
We can arrange free sample , but the international courier charge is by your side .

Products application

China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry   

Factory environment

some other products

China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry 
China POM ABS PA66 Plastic CNC plastic nylon Spur Gear for industry  

Company other products : 

1. Industrial Rubber sheet : SBR, NBR,CR, EPDM,Silicone,Viton, Nature,Fireproof ,waterproof , ESD, insulation  rubber sheet 

2. Gym rubber floor : granular rubber tile , dog bone rubber tile , CHINAMFG rubber rolls 

3. OEM Rubber parts 

4. door and window sealing strip 

5. CNC plastic products 

product-group/xohfkSQYvLWP/Plastic-productions-catalog-1.html
 

 

Plastic Type: Thermosetting Plastic
Plastic Form: Granule
Molding Method: Compression Molding
Color: White, Blue, Red, Green, Brown, Yellow, Nature
Material: Nylon, PA, POM, PE, Upe, PTFE, PVC, ABS
Physical Properties: Physical Properties of Common Engineering Plastics
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

plastic gear

How do you choose the right type of plastic material for specific applications?

Choosing the right type of plastic material for specific applications requires careful consideration of various factors. Here’s a detailed explanation of the process:

1. Identify Application Requirements: Begin by understanding the specific requirements of the application. Consider factors such as temperature range, chemical exposure, mechanical stress, electrical properties, dimensional stability, and regulatory compliance. This initial assessment will help narrow down the suitable plastic material options.

2. Research Plastic Material Properties: Conduct thorough research on different types of plastic materials and their properties. Consider factors such as mechanical strength, thermal stability, chemical resistance, electrical conductivity, impact resistance, UV stability, and food safety approvals. Plastic material datasheets and technical resources from manufacturers can provide valuable information.

3. Evaluate Material Compatibility: Assess the compatibility of the plastic material with the surrounding environment and other components in the system. Consider the potential for chemical reactions, galvanic corrosion, thermal expansion, and any specific requirements for mating surfaces or interfaces. Ensure the selected material is compatible with the intended operating conditions.

4. Consider Manufacturing Process: Evaluate the manufacturing process involved in producing the desired component or product. Different plastic materials may have specific requirements or limitations for processes such as injection molding, extrusion, blow molding, or machining. Ensure the chosen material is compatible with the selected manufacturing method and can meet the desired quality and production efficiency.

5. Assess Cost and Availability: Consider the cost and availability of the plastic material. Some specialty or high-performance plastics may be more expensive or have limited availability compared to more common materials. Evaluate the cost-effectiveness and feasibility of using the selected material within the project’s budget and timeline.

6. Consult with Material Experts: If necessary, consult with material experts, engineers, or suppliers who have expertise in plastic materials. They can provide valuable insights and recommendations based on their experience and knowledge of specific applications. Their input can help ensure the optimal material selection for the intended use.

7. Perform Prototype and Testing: Before finalizing the material selection, it’s advisable to produce prototypes or conduct testing using the chosen plastic material. This allows for verification of the material’s performance, dimensional accuracy, strength, durability, and other critical factors. Iterative testing and evaluation can help refine the material selection process if needed.

By following these steps and considering the application requirements, material properties, compatibility, manufacturing process, cost, and expert advice, it’s possible to choose the most appropriate plastic material for specific applications. Proper material selection is crucial for ensuring optimal performance, longevity, and safety in various industries and products.

plastic gear

How do you prevent premature wear and degradation in plastic gears?

Preventing premature wear and degradation in plastic gears requires implementing various measures and considerations. Here’s a detailed explanation of how to achieve this:

1. Material Selection: Choose a plastic material with suitable properties for the specific application. Consider factors such as strength, stiffness, wear resistance, and compatibility with operating conditions. Opt for materials that have good resistance to wear, fatigue, and environmental factors to minimize premature degradation.

2. Gear Design: Pay attention to the design of the plastic gears to minimize wear and degradation. Optimize the tooth profile, gear geometry, and load distribution to reduce stress concentrations and ensure even load sharing among the teeth. Incorporate features such as fillets, reinforcements, and optimized tooth profiles to enhance the gear’s durability.

3. Lubrication: Proper lubrication is essential to reduce friction, minimize wear, and prevent premature degradation. Choose lubricants that are compatible with the plastic material and the operating conditions. Ensure adequate lubrication by following manufacturer recommendations and implementing proper lubrication techniques such as oil bath, grease, or dry lubrication.

4. Operating Conditions: Consider the operating conditions and make adjustments to prevent premature wear and degradation. Control operating temperatures within the recommended range for the plastic material to avoid thermal degradation. Avoid excessive speeds or loads that can lead to increased friction and wear. Minimize exposure to harsh chemicals, UV radiation, or abrasive particles that can degrade the plastic material.

5. Maintenance: Implement regular maintenance practices to prevent premature wear and degradation. Conduct periodic inspections to identify signs of wear or damage. Replace worn or damaged gears promptly to prevent further degradation. Follow recommended maintenance schedules for lubrication, cleaning, and any other specific requirements for the plastic gears.

6. Proper Installation: Ensure that plastic gears are installed correctly to minimize wear and degradation. Follow manufacturer guidelines and recommendations for installation procedures, such as proper alignment, torque values, and fastening techniques. Improper installation can lead to misalignment, increased stress concentrations, and accelerated wear.

7. Optimized Load Distribution: Design the gear system to ensure even load distribution across the gear teeth. Consider factors such as tooth profile, tooth width, and the number of teeth to optimize load sharing. Uneven load distribution can lead to localized wear and premature degradation of specific gear teeth.

8. Environmental Protection: Protect plastic gears from harsh environmental conditions that can accelerate wear and degradation. Implement measures such as sealing mechanisms, coatings, or encapsulation to shield the gears from exposure to chemicals, moisture, UV radiation, or abrasive particles.

9. Quality Manufacturing: Ensure high-quality manufacturing processes to minimize defects and inconsistencies that can compromise the durability of plastic gears. Use reputable suppliers and manufacturers that adhere to strict quality control measures. Conduct thorough inspections and testing to verify the quality of the gears before installation.

By considering these preventive measures, such as material selection, gear design, lubrication, operating conditions, maintenance, proper installation, load distribution optimization, environmental protection, and quality manufacturing, it’s possible to minimize premature wear and degradation in plastic gears, ensuring their longevity and performance.

plastic gear

How do plastic gears differ from metal gears in terms of performance?

Plastic gears and metal gears exhibit differences in performance characteristics. Here’s a detailed explanation of how plastic gears differ from metal gears:

Strength and Durability:

  • Metal gears are generally stronger and more durable compared to plastic gears. They can withstand higher torque, heavy loads, and harsh operating conditions. Metal gears are commonly used in applications that require high strength and durability, such as heavy machinery, automotive transmissions, and industrial equipment.
  • Plastic gears have lower strength and may not be suitable for applications with high torque or heavy loads. However, advancements in plastic materials and manufacturing techniques have resulted in the development of high-performance plastics that offer improved strength and durability, allowing plastic gears to be used in a wider range of applications.

Weight:

  • Plastic gears are significantly lighter in weight compared to metal gears. This lightweight characteristic is advantageous in applications where weight reduction is important, as it can contribute to energy efficiency, lower inertia, and reduced wear on supporting components.
  • Metal gears are heavier due to the density and strength of the metal materials used. While the weight of metal gears can provide benefits in certain applications that require high inertia or increased stability, it may also result in additional energy consumption and higher stresses on supporting structures.

Noise and Vibration:

  • Plastic gears have inherent damping properties that help reduce noise and vibration levels during operation. This makes them suitable for applications where noise reduction is desired, such as in consumer electronics or office equipment.
  • Metal gears tend to generate more noise and vibration due to their higher stiffness. While there are methods to reduce noise in metal gears through design modifications and the use of noise-dampening materials, plastic gears generally offer better inherent noise and vibration reduction.

Wear and Lubrication:

  • Plastic gears have the advantage of self-lubrication due to certain plastic materials having inherent lubricating properties. This reduces friction and wear between gear teeth, eliminating the need for external lubrication and simplifying maintenance requirements.
  • Metal gears typically require lubrication to reduce friction and wear. Proper lubrication is essential for their performance and longevity. Insufficient or inadequate lubrication can lead to increased wear, heat generation, and even gear failure.

Corrosion Resistance:

  • Plastic gears can exhibit excellent resistance to corrosion and chemicals, depending on the chosen plastic material. This makes them suitable for applications in corrosive environments where metal gears may suffer from degradation or require additional protective measures.
  • Metal gears may corrode when exposed to moisture, chemicals, or certain operating environments. Corrosion can weaken the gears and compromise their performance and lifespan. However, corrosion-resistant metals or protective coatings can mitigate this issue.

Design Flexibility:

  • Plastic gears offer greater design flexibility compared to metal gears. Plastic materials can be easily molded into complex shapes, allowing for the creation of custom gear profiles and tooth geometries. This design flexibility enables gear optimization for specific applications, improving performance, efficiency, and overall machinery design.
  • Metal gears are more limited in terms of design flexibility due to the constraints of machining or shaping metal materials. While metal gears can still be customized to some extent, the process is generally more time-consuming and costly compared to plastic gear manufacturing.

It’s important to consider these performance differences when selecting between plastic and metal gears for a specific application. The requirements of the application, including load capacity, operating conditions, noise considerations, and durability expectations, should guide the choice of gear material.

China Good quality China POM ABS PA66 Plastic CNC Plastic Nylon Spur Gear for Industry manufacturer China Good quality China POM ABS PA66 Plastic CNC Plastic Nylon Spur Gear for Industry manufacturer
editor by CX 2023-11-02